Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 4): 150807, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626624

RESUMO

The West Coast of Ireland hosts many of the few populations of Freshwater Peal Mussels (FPM) left in Europe. The decline of this keystone species is strongly related to deteriorating hydrological conditions, specifically to the threat of low flows during dry summers. Populations still capable of reproducing require a minimum discharge and flow velocity to support juvenile mussels, or else stress builds up and an entire generation may be lost. Monitoring environmental and hydrological conditions in small and remote FPM catchments is difficult due to the lack of infrastructure. Indices derived from remote sensing imagery can be used to assess hydrological variables at the catchment scale. Here, five indices are tested as possible surrogates for soil moisture and evapotranspiration, based on two relevant land-cover types: open peat habitats (OPH) and forestry. Selected indices are then assessed in their ability to reproduce seasonal patterns and in their response to a severe drought event. The moisture stress index (MSI) and normalized difference vegetation index (NDVI) were found to be the best surrogates for soil moisture and evapotranspiration respectively. Both indices showed seasonality patterns in the two land-cover types, although the variability of MSI was significantly higher. During the 2018 drought, MSI visibly increased only in OPH, while NDVI rose only for forestry. The results suggest that OPH enhances the long-term hydrological resilience of a catchment by conserving water in the peat substrate, while industrial forestry plantations exacerbate the pressure on water during drier periods. This has consequences for river discharge, freshwater biodiversity and specifically for FPM. Implementing these surrogates have the potential to identify land-use management strategies that reduce and even avert the effects of drought on FPM. Such strategies are increasingly necessary in a climate change context, as recurring summer droughts are expected in most of Europe.


Assuntos
Bivalves , Tecnologia de Sensoriamento Remoto , Animais , Secas , Água Doce , Hidrologia
2.
Water (Basel) ; 13(3): 371, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33868721

RESUMO

The biological assessment of rivers i.e., their assessment through use of aquatic assemblages, integrates the effects of multiple-stressors on these systems over time and is essential to evaluate ecosystem condition and establish recovery measures. It has been undertaken in many countries since the 1990s, but not globally. And where national or multi-national monitoring networks have gathered large amounts of data, the poor water body classifications have not necessarily resulted in the rehabilitation of rivers. Thus, here we aimed to identify major gaps in the biological assessment and rehabilitation of rivers worldwide by focusing on the best examples in Asia, Europe, Oceania, and North, Central, and South America. Our study showed that it is not possible so far to draw a world map of the ecological quality of rivers. Biological assessment of rivers and streams is only implemented officially nation-wide and regularly in the European Union, Japan, Republic of Korea, South Africa, and the USA. In Australia, Canada, China, New Zealand, and Singapore it has been implemented officially at the state/province level (in some cases using common protocols) or in major catchments or even only once at the national level to define reference conditions (Australia). In other cases, biological monitoring is driven by a specific problem, impact assessments, water licenses, or the need to rehabilitate a river or a river section (as in Brazil, South Korea, China, Canada, Japan, Australia). In some countries monitoring programs have only been explored by research teams mostly at the catchment or local level (e.g., Brazil, Mexico, Chile, China, India, Malaysia, Thailand, Vietnam) or implemented by citizen science groups (e.g., Southern Africa, Gambia, East Africa, Australia, Brazil, Canada). The existing large-extent assessments show a striking loss of biodiversity in the last 2-3 decades in Japanese and New Zealand rivers (e.g., 42% and 70% of fish species threatened or endangered, respectively). A poor condition (below Good condition) exists in 25% of South Korean rivers, half of the European water bodies, and 44% of USA rivers, while in Australia 30% of the reaches sampled were significantly impaired in 2006. Regarding river rehabilitation, the greatest implementation has occurred in North America, Australia, Northern Europe, Japan, Singapore, and the Republic of Korea. Most rehabilitation measures have been related to improving water quality and river connectivity for fish or the improvement of riparian vegetation. The limited extent of most rehabilitation measures (i.e., not considering the entire catchment) often constrains the improvement of biological condition. Yet, many rehabilitation projects also lack pre-and/or post-monitoring of ecological condition, which prevents assessing the success and shortcomings of the recovery measures. Economic constraints are the most cited limitation for implementing monitoring programs and rehabilitation actions, followed by technical limitations, limited knowledge of the fauna and flora and their life-history traits (especially in Africa, South America and Mexico), and poor awareness by decision-makers. On the other hand, citizen involvement is recognized as key to the success and sustainability of rehabilitation projects. Thus, establishing rehabilitation needs, defining clear goals, tracking progress towards achieving them, and involving local populations and stakeholders are key recommendations for rehabilitation projects (Table 1). Large-extent and long-term monitoring programs are also essential to provide a realistic overview of the condition of rivers worldwide. Soon, the use of DNA biological samples and eDNA to investigate aquatic diversity could contribute to reducing costs and thus increase monitoring efforts and a more complete assessment of biodiversity. Finally, we propose developing transcontinental teams to elaborate and improve technical guidelines for implementing biological monitoring programs and river rehabilitation and establishing common financial and technical frameworks for managing international catchments. We also recommend providing such expert teams through the United Nations Environment Program to aid the extension of biomonitoring, bioassessment, and river rehabilitation knowledge globally.

3.
Ecol Appl ; 30(2): e02034, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31680362

RESUMO

Active species reintroduction is an important conservation tool when aiming for the restoration of biological communities and ecosystems. The effective monitoring of reintroduction success is a crucial factor in this process. Here, we used a combination of environmental DNA (eDNA) techniques and species distribution models (SDMs) to evaluate the success of recent reintroductions of the freshwater fish Alburnoides bipunctatus in central Germany. We built SDMs without and with eDNA presence data to locate further suitable reintroduction sites and potentially overlooked populations of the species. We successfully detected eDNA of A. bipunctatus at all reintroduction sites, as well as several adjacent sites mostly in downstream direction, which supports the success of reintroduction efforts. eDNA-based species detection considerably improved SDMs for A. bipunctatus, which allowed to identify species presence in previously unknown localities. Our results confirm the usefulness of eDNA techniques as standard tool to monitor reintroduced fish populations. We propose that combining eDNA with SDMs is a highly effective approach for long-term monitoring of reintroduction success in aquatic species.


Assuntos
DNA Ambiental , Ecossistema , Animais , Peixes/genética , Água Doce , Alemanha
4.
Sci Total Environ ; 660: 611-621, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30641390

RESUMO

The capacity of ecosystems to supply ecosystem services is decreasing. Sustaining this supply requires an understanding of the links between the impacts of pressures introduced by human activities and how this can lead to changes in the supply of services. Here, we apply a novel approach, assessing 'risk to ecosystem service supply' (RESS), across a range of aquatic ecosystems in seven case studies. We link aggregate impact risk from human activities on ecosystem components, with a relative score of their potential to supply services. The greatest RESS is found where an ecosystem component with a high potential to supply services is subject to high impact risk. In this context, we explore variability in RESS across 99 types of aquatic ecosystem component from 11 realms, ranging from oceanic to wetlands. We explore some causes of variability in the RESS observed, including assessment area, Gross Domestic Product (GDP) and population density. We found that Lakes, Rivers, Inlets and Coastal realms had some of the highest RESS, though this was highly dependent on location. We found a positive relationship between impact risk and service supply potential, indicating the ecosystem components we rely on most for services, are also those most at risk. However, variability in this relationship indicates that protecting the supply of ecosystem services alone will not protect all parts of the ecosystem at high risk. Broad socio-economic factors explained some of the variability found in RESS. For example, RESS was positively associated with GDP and artificial and agricultural land use in most realms, highlighting the need to achieve balance between increasing GDP and sustaining ecosystem health and human wellbeing more broadly. This approach can be used for sustainable management of ecosystem service use, to highlight the ecosystem components most critical to supplying services, and those most at risk.

5.
Sci Total Environ ; 650(Pt 1): 1613-1627, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308847

RESUMO

Freshwater ecosystems are increasingly under threat as they are confronted with multiple anthropogenic impairments. This calls for comprehensive management strategies to counteract, or even prevent, long-term impacts on habitats and their biodiversity, as well as on their ecological functions and services. The basis for the efficient management and effective conservation of any ecosystem is sufficient knowledge on the state of the system and its response to external influence factors. In freshwater ecosystems, state information is currently drawn from ecological assessments at the reach or site scale. While these assessments are essential, they are not sufficient to assess the expected outcome of different river restoration strategies, because they do not account for important characteristics of the whole river network, such as habitat connectivity or headwater reachability. This is of particular importance for the spatial prioritization of restoration measures. River restoration could be supported best by integrative catchment-scale ecological assessments that are sensitive to the spatial arrangement of river reaches and barriers. Assessments at this scale are of increasing interest to environmental managers and conservation practitioners to prioritize restoration measures or to locate areas worth protecting. We present an approach based on decision support methods that integrates abiotic and biotic ecological assessments at the reach-scale and aggregates them spatially to describe the ecological state of entire catchments. This aggregation is based on spatial criteria that represent important ecological catchment properties, such as fish migration potential, resilience, fragmentation and habitat diversity in a spatially explicit way. We identify the most promising assessment criteria from different alternatives based on theoretical considerations and a comparison with biological indicators. Potential applications are discussed, particularly for supporting the strategic, long-term planning and spatial prioritization of restoration measures.


Assuntos
Ecossistema , Monitoramento Ambiental , Rios , Biodiversidade , Conservação dos Recursos Naturais , Ecologia
6.
Sci Total Environ ; 657: 517-534, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30550915

RESUMO

Global initiatives have been increasingly focusing on mainstreaming the values of biodiversity and ecosystem services into decision-making at all levels. Due to the accelerated rate at which biodiversity is declining and its consequences for the functioning of ecosystems and subsequently, the services they provide, there is need to develop comprehensive assessments of the services and the benefits nature delivers to society. Based on expert evaluation, we identified relevant flow linkages in the supply-side of the socio-ecological system, i.e. from biodiversity to ecosystem services supply for eight case studies across European aquatic ecosystems covering freshwater, transitional, coastal and marine waters realms. Biological mediated services were considered, as well as those reliant on purely physical aspects of the ecosystem, i.e. abiotic outputs, since both have implications for spatial planning, management and decision-making. Due to the multidimensional nature of ecosystems and their biodiversity, our approach used ecosystem components such as habitats and biota as proxies for biodiversity and as the focal point for linkage identification. Statistical analysis revealed the importance of considering mobile biota in the spatial assessment of habitats. Contrary to literature evidences so far, our results showed significantly different and complementary ecosystem services supply patterns across the continuum of aquatic realms. The implemented score of ecosystem services supply has a high potential for integrated aquatic ecosystem service supply assessments in the context of ecosystem-based management.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Política Ambiental , Biodiversidade , Europa (Continente) , Água Doce , Modelos Teóricos , Marrocos , Água do Mar
7.
Sci Total Environ ; 652: 1396-1408, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30586824

RESUMO

Aquatic ecosystems are under severe pressure. Human activities introduce an array of pressures that impact ecosystems and their components. In this study we focus on the aquatic domains of fresh, coastal and marine waters, including rivers, lakes and riparian habitats to transitional, coastal as well as shelf and oceanic habitats. In an environmental risk assessment approach, we identified impact chains that link 45 human activities through 31 pressures to 82 ecosystem components. In this linkage framework >22,000 activity-pressure-ecosystem component interactions were found across seven European case studies. We identified the environmental impact risk posed by each impact chain by first categorically weighting the interactions according to five criteria: spatial extent, dispersal potential, frequency of interaction, persistence of pressure and severity of the interaction, where extent, dispersal, frequency and persistence account for the exposure to risk (spatial and temporal), and the severity accounts for the consequence of the risk. After assigning a numerical score to each risk criterion, we came up with an overall environmental impact risk score for each impact chain. This risk score was analysed in terms of (1) the activities and pressures that introduce the greatest risk to European aquatic domains, and (2) the aquatic ecosystem components and realms that are at greatest risk from human activities. Activities related to energy production were relevant across the aquatic domains. Fishing was highly relevant in marine and environmental engineering in fresh waters. Chemical and physical pressures introduced the greatest risk to the aquatic realms. Ecosystem components that can be seen as ecotones between different ecosystems had high impact risk. We show how this information can be used in informing management on trade-offs in freshwater, coastal and marine resource use and aid decision-making.


Assuntos
Conservação dos Recursos Hídricos/métodos , Ecossistema , Água Doce/química , Atividades Humanas/tendências , Água do Mar/química , Poluição da Água/análise , Organismos Aquáticos/efeitos dos fármacos , Humanos , Medição de Risco , Poluição da Água/efeitos adversos
8.
Sci Data ; 5: 180224, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398476

RESUMO

Hydrological variables are among the most influential when analyzing or modeling stream ecosystems. However, available hydrological data are often limited in their spatiotemporal scale and resolution for use in ecological applications such as predictive modeling of species distributions. To overcome this limitation, a regression model was applied to a 1 km gridded stream network of Germany to obtain estimated daily stream flow data (m3 s-1) spanning 64 years (1950-2013). The data are used as input to calculate hydrological indices characterizing stream flow regimes. Both temporal and spatial validations were performed. In addition, GLMs using both the calculated and observed hydrological indices were compared, suggesting that the predicted flow data are adequate for use in predictive ecological models. Accordingly, we provide estimated stream flow as well as a set of 53 hydrological metrics at 1 km grid for the stream network of Germany. In addition, we provide an R script where the presented methodology is implemented, that uses globally available data and can be directly applied to any other geographical region.

9.
Biol Rev Camb Philos Soc ; 93(1): 55-71, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28447398

RESUMO

Key global indicators of biodiversity decline, such as the IUCN Red List Index and the Living Planet Index, have relatively long assessment intervals. This means they, due to their inherent structure, function as late-warning indicators that are retrospective, rather than prospective. These indicators are unquestionably important in providing information for biodiversity conservation, but the detection of early-warning signs of critical biodiversity change is also needed so that proactive management responses can be enacted promptly where required. Generally, biodiversity conservation has dealt poorly with the scattered distribution of necessary detailed information, and needs to find a solution to assemble, harmonize and standardize the data. The prospect of monitoring essential biodiversity variables (EBVs) has been suggested in response to this challenge. The concept has generated much attention, but the EBVs themselves are still in development due to the complexity of the task, the limited resources available, and a lack of long-term commitment to maintain EBV data sets. As a first step, the scientific community and the policy sphere should agree on a set of priority candidate EBVs to be developed within the coming years to advance both large-scale ecological research as well as global and regional biodiversity conservation. Critical ecological transitions are of high importance from both a scientific as well as from a conservation policy point of view, as they can lead to long-lasting biodiversity change with a high potential for deleterious effects on whole ecosystems and therefore also on human well-being. We evaluated candidate EBVs using six criteria: relevance, sensitivity to change, generalizability, scalability, feasibility, and data availability and provide a literature-based review for eight EBVs with high sensitivity to change. The proposed suite of EBVs comprises abundance, allelic diversity, body mass index, ecosystem heterogeneity, phenology, range dynamics, size at first reproduction, and survival rates. The eight candidate EBVs provide for the early detection of critical and potentially long-lasting biodiversity change and should be operationalized as a priority. Only with such an approach can science predict the future status of global biodiversity with high certainty and set up the appropriate conservation measures early and efficiently. Importantly, the selected EBVs would address a large range of conservation issues and contribute to a total of 15 of the 20 Aichi targets and are, hence, of high biological relevance.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Monitorização de Parâmetros Ecológicos/métodos , Monitoramento Ambiental/métodos , Animais , Cooperação Internacional
10.
Sci Total Environ ; 621: 588-599, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29195206

RESUMO

Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures.


Assuntos
Mudança Climática , Ecossistema , Invertebrados , Rios , Animais , Conservação dos Recursos Naturais , Europa (Continente) , Espécies Introduzidas , Temperatura
11.
Sci Total Environ ; 587-588: 1-10, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28190575

RESUMO

In 2015, over 90 percent of German rivers failed to reach a good ecological status as demanded by the EU Water Framework Directive (WFD). Deficits in water quality, mainly from diffuse pollution such as agricultural run-off, but also from wastewater treatment plants (WWTPs), have been suggested as important drivers of this decline in ecological quality. We modelled six macroinvertebrate based metrics indicating ecological quality for 184 streams in response to a) PCA-derived water quality gradients, b) individual water quality variables and c) catchment land use and wastewater exposure indices as pollution drivers. The aim was to evaluate the relative importance of key water quality variables and their sources. Indicator substances (i.e. carbamazepine and caffeine indicating wastewater exposure; herbicides indicating agricultural run-off) represented micropollutants in the analyses and successfully related water quality variables to pollution sources. Arable and urban catchment land covers were strongly associated with reduced ecological quality. Electric conductivity, oxygen concentration, caffeine, silicate and toxic units with respect to pesticides were identified as the most significant in-stream predictors in this order. Our results underline the importance to manage diffuse pollution, if ecological quality is to be improved. However, we also found a clear impact of wastewater on ecological quality through caffeine. Thus, improvement of WWTPs, especially preventing the release of poorly treated wastewater, will benefit freshwater communities.


Assuntos
Monitoramento Ambiental , Invertebrados/fisiologia , Poluentes Químicos da Água/análise , Agricultura , Animais , Rios/química , Eliminação de Resíduos Líquidos , Qualidade da Água
12.
PLoS One ; 10(4): e0123250, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909190

RESUMO

Little work has been done on large-scale patterns of stream insect richness in China. We explored the influence of climatic and catchment-scale factors on stream insect (Ephemeroptera, Plecoptera, Trichoptera; EPT) richness across mid-latitude China. We assessed the predictive ability of climatic, catchment land cover and physical structure variables on genus richness of EPT, both individually and combined, in 80 mid-latitude Chinese streams, spanning a 3899-m altitudinal gradient. We performed analyses using boosted regression trees and explored the nature of their influence on richness patterns. The relative importance of climate, land cover, and physical factors on stream insect richness varied considerably between the three orders, and while important for Ephemeroptera and Plecoptera, latitude did not improve model fit for any of the groups. EPT richness was linked with areas comprising high forest cover, elevation and slope, large catchments and low temperatures. Ephemeroptera favoured areas with high forest cover, medium-to-large catchment sizes, high temperature seasonality, and low potential evapotranspiration. Plecoptera richness was linked with low temperature seasonality and annual mean, and high slope, elevation and warm-season rainfall. Finally, Trichoptera favoured high elevation areas, with high forest cover, and low mean annual temperature, seasonality and aridity. Our findings highlight the variable role that catchment land cover, physical properties and climatic influences have on stream insect richness. This is one of the first studies of its kind in Chinese streams, thus we set the scene for more in-depth assessments of stream insect richness across broader spatial scales in China, but stress the importance of improving data availability and consistency through time.


Assuntos
Biodiversidade , Clima , Ecossistema , Insetos/classificação , Rios/parasitologia , Animais , China , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...